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This article introduces a model fluid that has ideal liquid and perfect gas phases and a 
homogeneous two-phase mixture region. The thermodynamic-state properties of the model 
compare favorably with those of three common fluids. 

A gas dynamic study of Rayleigh and Fanno flows is discussed using one approach 
similar to the classical work of Shercliff and another based on the proposed model. 

The role of the isentropic and Newtonian and other new "sound speeds" are discussed. 
The relevance of these sound speeds in relation to critical speeds of the fluid is examined. 
It is concluded that in the two-phase region, a Rayleigh f low exhibits a maximum enthalpy 
at a point where the f low velocity reaches the isenthalpic speed of sound. This third speed 
of sound a. is defined by the relation a~ = (c~p/c~p).. 
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Introduction 

There are many situations in which a one-dimensional ( l -D) 
model gives a useful description of an actual flow. In most of 
these, the fluid is modeled as an incompressible liquid or perfect 
gas. A very successful example of the latter is the flow through 
a convergent-divergent nozzle. These models have been refined 
where needed, first, to take account of three-dimensional (3-D) 
effects and, secondly, to accommodate departures from ideal 
fluids. 

The present article reports the results of a study of 1-D flows 
of a nonideal fluid. The state of the fluid can range from an 
incompressible liquid through a two-phase, liquid vapour 
region to a gaseous region. 

The objectives of the article are, first, to present the ideas 
for a model fluid and to demonstrate that its resultant 
thermodynamic properties are reasonable; and secondly, to 
describe and discuss a study of Rayleigh and Fanno flows for 
homogeneous nonideal fluids, including a liquid-vapor 
two-phase mixture. 

The goals of the article are to provide further understanding 
of Rayleigh and Fanno flows and the role of some new "speeds 
of sound," particularly the third or isenthalpic speed of sound, 
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This is in addition to the roles of the well-known isentropic 
and Newtonian sound speeds. 

One-dimensional, steady-flow gas dynamics based on the 
perfect gas law for the case of a single-phase homogeneous fluid 
has been the subject of study in the past by many authors, in 
particular Shapiro and Hawthorne (1947). Such studies easily 
progress to simple analyses and establish the fact that the speed 
of sound is a critical velocity for nozzle flows, and for the 
Rayleigh and Fanno flows, whatever the fluid. In the case of 
an isothermal compressible flow, the critical speed is attributed 
to the so-called Newtonian sound speed. Books on the subject 
of compressible flows based on the perfect gas law are well 
established, e.g., Shapiro (1953) and Liepmann and Roshko 
(1957). Shercliff (1957/1958) has made a rigorous study of 
generalized steady 1-D flow, based on the fact that the state at 
each section of the flow in a strictly 1-D dynamical process can 
be uniquely described by three independent properties. With 
this assumption, Shercliff (1958) presented unique Maxwell- 
type relationships of the properties of the flow. The 
study also established the important roles of the speeds of 
adiabatic and Newtonian sound. 

An example of a compressible, high-speed flow in a two-phase 
fluid can be found in the capillary tube of a refrigeration system, 
where high-pressure fluid expands adiabatically to a lower 
pressure. In this process, the fluid usually enters the tube 
saturated at a high pressure but leaves the tube as a mixture 
of liquid and vapor (ASHRAE Equipment Handbook, 1988). 
The fluid velocity at the exit can be high, and such a situation 
can be described as a two-phase Fanno flow (Stoecker and 
Jones, 1982). 

In this article, an attempt is made to study flows in a duct 
in which the area does not change along the duct's length and 

273 



Rayleigh and Fanno flows of two-phase fluids: S. K. Chan and W. A. Woods 

in which the fluid remains in the two-phase state. A simple 
model of a two-phase fluid is used in which the fluid is assumed 
to be a homogeneous mixture of an ideal liquid and an ideal 
vapor, the proportion of which is given by the dryness fraction. 
An ideal liquid is, in this case, conveniently defined as one 
whose density and specific heat capacity do not change for the 
processes under consideration. An ideal vapor is defined as one 
obeying the perfect gas law. The model is then used to predict 
the behavior of Rayleigh and Fanno flows in a homogeneous 
two-phase region. In this work, considerations of slip between 
the phases and phase-change relaxation times are excluded. 

Mode l  for  an ideal f luid 

The l iqu id  region 

In the liquid region, an ideal liquid can be defined as one whose 
density po (or specific volume Vo) is a constant. For  the model 
liquid, the value of Vo is selected as 0.4v* ; this appears in Figure 

1 as a straight line at Vf = 0.4. This assumption is not very 
accurate for liquids at high temperatures near the critical point. 
However, in most parts of the region of interest, the assumption 
of incompressibility can be shown to be reasonable. Data taken 
from Reynolds (1979) and given nondimensionally in Figure 
1 show the saturated-liquid specific volume Vf against the 
saturated temperature 0,a t for water, refrigerant-22, and 
ammonia; it also shows that Vf does not change extensively 
over the range of interest. Both Vf and 0s, t are normalized using 
the thermodynamic critical-point values. Also, in the liquid 
region, it is assumed that the specific heat capacity c does not 
change with pressure and temperature. The values for c were 
taken from Rosenhow et al. (1985) corresponding to a 
temperature of 300 K. 

As such, the equilibrium condition reduces to Tds = cdT, 
which, after integration, yields 

- In  ( 1 )  
C 

where the superscript (*) is used to denote properties at an 

Nota t ion  

Lower-case letters 

ae Speed of sound at constant internal energy 
a h Isenthalpic speed of sound 
as Adiabatic speed of sound 
aT Isothermal speed of sound 
a X Speed of sound at constant dryness fraction 
The above descriptions are intended to denote the expression 

(a y :2 
~ p ] ,  where q~ = e, h, s, T, or x 

c Specific heat capacity of liquid 
Cp Isobaric specific heat capacity of gas 
cv Isochoric specific heat capacity of gas 
e Specific internal energy 
h Specific enthalpy 
ho Specific stagnation enthalpy 
k Empirical nondimensional curve-fitting constant 

(Equations 9 and 11) 
p Pressure 
s Specific entropy 
u Velocity 
v Specific volume 
v o Specific volume of ideal liquid 
x Dryness fraction 

Upper-case letters 

C Empirical nondimensional parameter (Equation 11 ) 
F Impulse per unit area (Equation 17) 
G Mass velocity (Equation 18) 
H Nondimensional enthalpy (Equation 4) 
M Mach number 
M h Isenthalpic Mach number 
MT Isothermal or Newtonian Mach number 
M e Iso-internal enogetic Mach number 
P Nondimensional pressure (Equation 3) 
P,,t Nondimensional saturation pressure 
R Characteristic gas constant 
S Nondimensional entropy (Equation 4) 

T Thermodynamic temperature 
V Nondimensional volume 

Vo - v° - 0.4 nondimensional value for ideal liquid 
V* 

Greek symbols 

Nondimensional parameter (Equation 3) 
fl Nondimensional parameter (Equation 29) 

Ratio of specific heat capacities, Cp/Cv 
2 Non-dimensional parameter (Equation 39) 
~b Variable to represent e, h, s, T, x 
p Density 
Po Density of ideal liquid 
0 Nondimensional temperature (Equation 3) 
0s,t Nondimensional saturation temperature 

Superscript 

* Reference conditions 

Subscripts 

e At constant internal energy 
FAN Along a Fanno curve 
f Saturated liquid conditions 
g Saturated vapor conditions 
h At constant enthalpy 
o Stagnation conditions also used to denote the 

specific and nondimensional volume of the ideal 
liquid when used with v and V, respectively 

RAY Along a Rayleigh curve 
s Isentropic conditions 
sat Saturation conditions 
T Isothermal conditions 
x At constant dryness fraction 

Special symbol 

^ Denotes the conditions at a prescribed location in 
the duct 
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arbitrary reference point. In this article, the reference condition 
used is the thermodynamic critical point unless otherwise stated. 
The change of the specific enthalpy is given by 

h -  h* = c ( T  - T*) + v * ( p -  p*) (2) 

By defining the nondimensional schemes 

T p v'p* 
0 - P = - -  c< - (3) 

T* p* cT* 

s - s* h - h* 
S - H - (4) 

c cT* 

Equations 1 and 2 can be written as 

S = In (0 )  (5) 

H = ( 0 - 1 ) + ~ ( P - - 1 )  (6) 

We note that (OH/OS)v = 0 = e s and (OH/OP), = ~, i.e., the 
distance between any two isobars in the enthalpy-entropy 
(H, S) thermodynamic plane along a line of fixed entropy is 
proportional to the pressure difference. Furthermore, this 
separation does not change with a change in the line of fixed 
entropy. The parameter ~ is expected to be small, of the order 
of 0.025, so the dependence of H on pressure P is small. 
Equations 5 and 6 are also assumed to apply at the 
saturated-liquid state, so the changes of specific entropy Sf and 
of enthalpy He are given by 

Sf = In 0,,t (7) 

and 

H f =  (0,, t - 1 ) +  ct(P,= t - 1) (8) 

In the two-phase region, pressure and temperature are 
dependent on each other, and an empirical relation between 
the saturated pressure P,a, and saturated temperature 0,,t is 
required. Figure 2 shows the variation of esa t  against 0~t for 
water, refrigerant-22, and ammonia, and a suitable equation 
to represent the real fluid data adequately is given by 

P,., = (0..,) k, (9 )  

where k is a constant used for curve fitting. The magnitudes of 
this and of the other parameters used for calculating the curves 
for the model and the points for the actual fluids are given in 
Tables 1 and 2. 

Figures 3 and 4 show the graphical representations of 
Equations 7 and 8 for the variations of Sf  and Hr with saturated 
temperature 0,=r Comparisons are made between the fluid 
properties for water, refrigerant-22, ammonia, and the model, 
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Figure I The variation of the normalized saturated-l iquid specific 
volume with the normalized saturated temperature 
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Figure 2 The variation of the normalized saturated pressure with 
the normalized saturated temperature 

and they indicate that the model equations give reasonable 
representation of the real fluids. 

The vapor region 

In the vapor region, a perfect gas model is used. This is defined 
by the equation of state, p = pRT, together with the condition 
that the specific heat capacities do not change with temperature 
and pressure. As an approximation, the saturated-vapor state 
is also assumed to follow this law, so the specific volume, v v 
is given by vg = RT, at/P,= or, in the normalized form, 

v, ( R T * ~  0,~, 
v ,  = = ( l O )  

where the term within the parentheses does not change for a 
given fluid, i.e., 

RT* 
C -  

v'p* 

The values of R were taken from Reynolds (1979). 
Equation 10 implies that V s is a function of 0,= t (or P,,t) only. 

Figure 5 shows that the variation of V s with saturated 
temperature, 0,=, in the region of interest, except in the vicinity 
of the thermodynamic critical point, can be represented 
adequately by the equation 

Vg-~- C(0sat) 1-k (11) 

The values of the dimensional empirical quantities and 
parameters for the selected fluids are summarized in Table 1, 
and the values of the nondimensional curve-fitting constant k 
and parameter C are given in Table 2. These values of C are 
approximately four, rather than the value of unity, which would 
satisfy Equation 11 at the thermodynamic critical point. 
However, to provide a reasonable fit for Figure 5, a compromise 
value of C = 2 has been used. This gives rise to discrepancies 
in x, which are most pronounced in the vicinity of the 
thermodynamic critical point, apparent later in Figures 8 and 
11. 

The two-phase homogeneous mixture region 

The saturated mixture of the two-phase region can then be 
assumed to consist of a mixture of the ideal liquid, as already 
defined, and an ideal gas, the proportion of each phase being 
expressed in terms of the dryness fraction, x, which is defined 
as the ratio of the mass of the vapor component to the total 
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Table 1 Selected dimensional and nondimensional quantities and parameters' 

Dimensional quantities 

Water Refrigerant-22 Ammonia 

T* (K) 
p* (MPa) 
v* (m3/kg) 
h* (kJ/kg) 
s* (kJ/kg K) 
R (J/kg K) 
c (J/kg K) 
Rayleigh G, kg/ (m 2 s) 
Fanno G, kg/(m2 s) 

Nondirnensional quantities 

v 'p* 
= = 0.025 

cT* 

RT* 
C -  - 2.0 

v'p* 

G2v*2 
2 = = 0.0005 

2cT .2 

G2v .2 

p* 

647.29 369.17 406.80 
22.089 4.9776 11.627 

0.003155 0.001906 0.004208 
2098.8 246.26 1233.56 

4.4289 0.8263 3.9069 
461.51 96.1467 488.21 
4179 1256 4810 

45830 27990 28791 
16485 11298 10512 

"Used in conjunction with the Reynolds Thermodynamic Properties (Reynolds 1979) in calculating the points shown on the figures. Note 
that the asterisk (*)  refers to the thermodynamic critical point. 

Table 2 Nondimensional parameters' 

Magnitudes used 
in calculating the 

curves for the model 
shown in the figures 

Magnitudes corresponding to 
actual property values 

Water Refrigerant-22 Ammonia 

v 'p*  
a = 0.025 

cT* 

RT* 
C =  2.0 

v'p* 

k = 9  

G2v .2 
2 = 0.0005 

2cT* 

G2V .2 
f l =  0.3 p* 

Vo = v° 0.4 
V* 

0.0258 0.0205 0.0250 

4.2865 3.7413 4.0592 

' Used in conjunction with the model fluid in calculating the curves 
shown on the figures. Note that the asterisk (* )  refers to the 
thermodynamic critical point. 

mass and is given by the equation 

v = xv, + (1 - x)vf 

or, in the normalized form, 

V = V r + x ( V , -  V,) (12) 

where V = v/v* and V r = vr/v*. For the model liquid, we may 
put Vf = 1. We note that the thermodynamic critical point is 
a singularity and that at this point the dryness fraction x is 
indeterminate. 

The link between the entropy value of the saturated vapor 
Sg and that of the saturated liquid Sr is provided by the 
Clausius-Clapeyron equation as 

s ,  = s ,  + ~ ( v ,  - v,) ~ - . ,  (13) 

The saturated-vapor specific enthalpy H~ is given by 

Hg = Hf + O,at(Sg - Sf) (14) 

The specific entropy S and enthalpy H for the two-phase 
mixture region can be written in terms of their respective values 
at the saturated states and the dryness fraction as follows: 

S = Sr + x ( S g -  Sf) (15) 

H = H f + x ( H , - H f )  (16) 

As mentioned above in connection with Equation 12, the 
dryness fraction is indeterminate at the thermodynamic critical 

8t~?f 
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Figure 3 The variation of the normalized saturated-liquid specific 
entropy with the normalized saturated temperature 
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Figure 5 The variation of the normalized saturated-vapor specific 
volume with the normalized saturated temperature 

point and the same difficulties occur in relation to the evaluation 
of x from Equations 15 and 16. This is almost certainly the 
explanation for the differences shown later between the model 
curve and the fluid data points at high pressures in Figures 8 
and 11. 

R a y l e i g h  p r o c e s s  

The Rayleigh process describes a steady, frictionless flow of 
fluid with heat transfer in a duct in which the cross-sectional 
area does not change along its length. The flow is characterized 
by the fact that the impulse per unit area F and the mass flow 
per unit area G also do not change along the length of the duct. 
Thus, 

F = p + pu 2 = p q- ~ 2  (17) 

and 

G = pu =/~fl (18) 

where p is the pressure, p is the density, and u is the velocity. 
The symbol ^ denotes the conditions at a prescribed location 
in the duct. 

When Equations 17 and 18 are combined, we have 
F = p + Gu so that (ap/au)ro,  v = - G  (the subscript RAy is to 
indicate that the differentiation is performed while keeping F 
and G unchanged). Hence, in an accelerating flow, p must 
necessarily decrease. For  flow in the two-phase region, the 
temperature T must also decrease when u increases. Elimination 

of u from Equations 17 and 18 gives the equation 

G 2 
F = p + - -  (19) 

P 

which describes the Rayleigh process as a family of curves 
(depending on the chosen values of F and G) in the plane of 
thermodynamic properties p and p. 

The process can be represented in the plane of any two 
thermodynamic properties, such as the (~b, s) plane, where q~ 
represents the thermodynamic property h, e, or T. Differentia- 
tion of Equation 19 yields 

. , v  = \ O p J s  

where M is the Mach number. By writing Equation 20 as 

t~SJRAY\t~P/s \t~SJRAYkt~PJs 

we obtain 

Therefore, 

i - ~  ( ~ l a s ) ~ )  

_ (ddp/c3s)p ~1 -- M 2 (ctP/dP)s~ 

i Z ~  ( (¢3P/~P)sJ 
i . e . ,  

\ ds J , \ l  - M=,} (21) 

where 

M s = u / a  s ,  as  = (a t , /ap)~ /2  

Equation 21 describes the slope of the Rayleigh line in the (q~, s) 
plane and shows that this characteristic is applicable to all real 
fluid flows. It indicates that the slope has two stationary values 
occurring at M s = 1 and at M = 1 when ~b and s are at the 
maximum, respectively. The stationary value occurring at 
maximum s is identified as that occurring when the velocity is 
equal to the adiabatic sound speed, as. However, the stationary 
value at maximum ~b occurs when the local velocity is equal to 

a s • 
The energy equation is given by 

ho = h + ½u 2 (22) 

where ho is the stagnation enthalpy. The variation of ho 
corresponds to heat transfer to or from the fluid. From the 
equilibrium condition, dh = Tds  + vdp, we obtain 

dh o = Tds  + vdp + udu = Tds  

Hence, (dho/dS)rtAv = T, i.e., the effect of heat transfer is to 
drive the flow towards Mach unity in the case of heating and 
away from Mach unity in the case of cooling. When ~b = h, 
Equation 21 becomes 

\ ~ 3 j  (23) 

and the sound speed ah can be shown to be related to the 
adiabatic sound speed a,, as follows: 

a, (Op/~gp), (Oh/Os)p _ 1 + -  

a--~h = (ap/8p)~h "= (ah/tgs)~ pcv ~ p 
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Hence, a h < a,, since (dp /dT)p  is always positive. In the 
subsonic region of the flow, heating will cause the enthalpy h 
to rise until the sound speed a h is reached; thereafter, the 
enthalpy decreases until Mach unity. Between the sound speed 
a h and the adiabatic sound speed, heating results in the decrease 
of the enthalpy, h, and an increase in the flow kinetic energy. 
In the supersonic region, as the entropy decreases, the enthalpy 
decreases and the rate of decrease also decreases from an infinite 
value at the sonic point. 

When q5 = e, Equation 21 becomes 

p \ ~ p , , I s j t , ~ /  (24) 

a= is the speed of sound at constant internal energy, and Me is 
the corresponding Mach number. The sound speed a c can be 
shown to be related to the adiabatic sound speed a, as follows : 

_e(0q ae -- 1 
2 a s r \ O p / s  

Hence a, < a,, since (OT/dp) ,  is always positive. 
When 4~ = T, Equation 21 becomes 

cp \ 1 - M 2,] 

where M r is the "isothermal" Mach number, i.e., the ratio u/a+, 
and where aT = (dp/Op)~/2 is the isothermal or Newtonian 
sound speed. The ratio M ~ / M  2 is equal to the specific heat 
capacity ratio ?, since 

2 a s (Op/(?p) s _ (Os/c~T)p Cp 

a~ (Op/gp)T (gs /gT)p  Cv 

Equation 25 is applicable to all flows in single-phase fluids in 
equilibrium and indicates that the stationary values of the flow 
occur at MT = 1 and at M = 1 when T and s are stationary, 
respectively. For  flows in two-phase fluids, % and M T are both 
infinite, so that, in the limit, Equation 25 becomes 

which indicates that only one stationary value exists for the 
Rayleigh line in the (T, s) plane when the flow occurs in the 
two-phase region. The stationary value occurs at maximum 
entropy. 

When flow occurs in the two-phase region, heating results 
in a decrease of temperature in the flow direction when flow is 
initially subsonic and an increase in temperature when flow is 
initially supersonic. This is to be expected, since pressure 
decreases with accelerating flow and increases in decelerating 
flow. 

The density p in terms of the dryness fraction x and the 
pressure p may be written as 

= 

',,OVA Yx !, 

Substituting into Equation 20, this becomes, after some 
rearrangement, 

(~3P) - u 2 ( O p / ~ 3 X ) p  (27) 
~X RAY 1 -- u2(Op/Op)x 

Thus, at the point of maximum dryness fraction, a stationary 
value exists where the flow velocity u is equal to ax, where 
a x = (ap/Op)~/2. The critical value a~ may be conveniently 
called the sound speed at constant dryness fraction. Therefore, 
in a heating process, the effect of heat transfer is to increase 

the dryness fraction until the point where u = a, is reached. 
The implication here is that the heat transfer in this case is 
being utilized for the conversion of the state of a fluid fraction 
from liquid to vapor. 

Consider a Rayleigh curve that passes through the 
thermodynamic critical-state point. From Equation 19, we may 
write 

P + G2v = p* + GZv * 

o r  

( P - -  1 ) + f l ( V - -  1 ) = 0  (28) 

where 

Gzv* 
f l  = - -  ( 2 9 )  p* 

and is a parameter that depends upon the value of G. 
Equation 28 is an alternative, normalized version of Equation 

19 and represents families of the Rayleigh line (depending on 
the chosen values of fl) on the pressure-volume (P, V) 
thermodynamic plane. 

In the case of flow in a two-phase fluid, the specific volume 
V is given by Equation 12, so Equation 28 can be written as 

(Ps,, - 1) + f l (V,  - 1)x = 0 (30) 

The value of G selected to compute the curves shown in Figures 
6, 7, and 8 is given in Table I, and the corresponding values 
of the nondimensional parameter fl are given in Table 2. 

Since Vs = V~ (P, at), Equation 30 represents the Rayleigh line 
in the (P, x) plane for various values of ft. The Rayleigh line 
in the (0, S) plane will be of interest. This can be obtained by 
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Figure 6 The Rayleigh process in the (H, S) thermodynamic plane 
for a homogeneous two-phase fluid 
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combining Equations 15, 13, and 30, resulting in (after some 
rearrangement) 

(;) S=lnOs,t+ (1 -e,=t) ~-,~,, (31) 

By combining Equations 15, 16, and 14, we obtain 

U = Hf + 0sat(S - Sf) (32) 

which, when combined with Equation 31, will result in the 
equation of the Rayleigh line in the enthalpy-entropy (H, S) 
plane. The comparisons shown in Figures 6, 7, and 8 are on 
the basis of the same values of a, fl, and C. 

Fanno process 

The Fanno process is one of steady, adiabatic flow with friction 
in a duct in which the cross-sectional area does not change 
along its length. The friction leads to a force on the fluid in the 
opposite direction to the flow. 

In a Fanno flow, the stagnation enthalpy ho and mass flow 
per unit area G do not change along the duct. From Equations 
18 and 22, we may write 

G 2 
ho = h + ½u 2 = h + - -  - ~o (33) 

2p2 - 

which is a description of the Fanno process in the plane of the 
thermodynamic properties, enthalpy h and density p. The 
gradient of the curve is given by 

FAN - -  P P s (34) 

where the subscript rAN indicates that the differentiation is taken 
while keeping ho and G unchanged. 

The slope of the Fanno curve in the (h, s) plane can be 
derived by writing 

Therefore, 

(t3h) ( M 2 ~ ( d h ~ _  TM 2 (35) 

~S F A N  = ~', M2 -- 1,]\dS,/p M 2 -- 1 

Equation 35 implies that the effect of friction in a Fanno flow 
is to drive the flow towards Mach unity, with enthalpy 
decreasing in the subsonic branch and increasing in the 
supersonic branch. A stationary point exists at Mach unity. 

In the (T, s) plane, howe~er, the gradient of the Fanno line 
can be obtained by writing 

where 

(t~h) 1/c~p\ 
~SS T :  T " l ' - ; t ~ S )  T 

and (o,,) 
7 7 ,  = t,77 :, 

Therefore, 

(~sT)vAN= _{OT'~ ( M 2 1 
P l t ~ p ) s l M ~  1 p-T (~--PS)T - 1  } (36) 

For flow in the two-phase region, Equation 36 reduces to 

(dp/dr),,t \ M  2 - 1 

which indicates that the flow reaches its maximum entropy 
when the Mach number is unity. 

There is no stationary value at maximum T, since M < Mh. 
From Equation 33, since the stagnation enthalpy is fixed and 
for a Fanno curve that passed through the thermodynamic 
critical-state point, we may write 

h + ½G2132 = h* -F ½G2/) .2  

or 

H + 2 ( V  2 - 1 ) = 0  (38) 

where 

GZv .2  
2 - (39) 

2c T* 

The value of G selected to compute the curves shown in Figures 
9, 10, and 11 is given in Table 1, and the corresponding values 
of the nondimensional parameter ). are given in Table 2. 

Equation 38 provides an alternative version of Equation 33 
that describes the Fanno process in the (H, V) plane for flows 
in all phases. The single parameter 2 accounts for the mass 
velocity term, which could be varied. From Equations 7, 12, 
13, and 15, it can be shown that 

S - l n ( 0 s = t )  
V = 1 + (40) 

ct(dP/dO),at 
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Figure 9 The Fanno process in the (H, S) thermodynamic plane 
for a homogeneous two-phase fluid 
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Figure 10 The Fanno process in the (O.,S) thermodynamic plane 
for a homogeneous two-phase fluid 
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Figure 11 The Fanno process in the (P,=e~) thermodynamic plane 
for a homogeneous two-phase fluid 

Substitution of H (from Equation 32) and V (from Equation 
40) into Equation 38 results in the equation of the Fanno line 
in the (0, S) plane, i.e., 

(0,,,, - 1) + ~(P,,,, - 1) + O , , , ( S  - In O,,,t) 

(41) 

The corresponding equation of the Fanno line in the (H, S) 
plane can be obtained by eliminating 0sa t from Equations 32 
and 41. The comparisons shown in Figures 9, 10, and 11 are 
on the basis of the same values of ct, C, and 2. 

D i s c u s s i o n  

This section of this article is in two parts. The first discusses 
two aspects of the nondimensional parameters used for 
presenting the information on the figures. The first aspect 
considers how well the nondimensional parameters correlate 
the points for the three different fluids, and the second reviews 
how well the curves of the model represent the data points of 
the three actual fluids. 

The second part of the discussion deals with the Rayleigh 
and Fanno flows and considers the nature of the flows and 
what they mean physically. 

The correlation and representation aspects of the 
results 

The first five diagrams give the static fluid properties. Figure 
1 shows a very good correlation for R-22 and ammonia and 
quite a good correlation for water. The model is not good in 
the vicinity of the thermodynamic critical point and is fair 
elsewhere. Figure 2 shows a good correlation and a fair 
representation by the model. Figure 3 shows a very good 
correlation for R-22 and ammonia, with a fair one for water. 
There is a fair representation by the model, and this could be 
improved by the selection of a different value of c. Figure 4 
shows a very good correlation for water and R-22, with quite 
a good one for ammonia. The model gives a fair representation 
and could be improved similarly to Figure 3, by the selection 
of a different c. Figure 5 shows a fair correlation for R-22 and 
ammonia, but not a very good one for water. The representation 
by the model is rather poor, and this could be improved by 
using a higher value, perhaps C = 4. 

The next three figures are concerned with Rayleigh flows. 
Figure 6 shows a good correlation and quite a good 
representation by the model except in the vicinity of the sonic 
point. Figure 7 shows a fair correlation and the model gives a 
reasonable representation. Figure 8 shows a good correlation 
for R-22 and ammonia. The model gives a good representation 
for the lower half of the pressure range, but then deviates 
markedly. This point will be discussed again later. 

The next three curves discuss the Fanno flows. At the critical 
point, Figure 9 shows a good correlation that deteriorates to 
fair as the enthalpy decreases. The model representation is 
similar, varying from good to poor as the enthalpy is decreased. 
Figure 10 shows a good correlation. The model gives a good 
representation except near the sonic point, where it is fair. In 
Figure 11, the parameters correlate the data points quite well 
for water and ammonia, but R-22 deviates quite markedly in 
the vicinity of maximum x. The model represents the trends 
quite well at low pressures, but then shows quite a different 
trend over most of the pressure range. The value of x is 
indeterminate at the critical point, and this will be discussed 
again later. 

The nature and meaning of the Rayleigh and Fanno 
f lows 

Figures 6 and 7, respectively, show the variation of enthalpy 
H and saturated temperature 0s, t with entropy S for the 
Rayleigh process. The model fluid equations are used, and 
comparisons are made graphically using the properties of water, 
ammonia, and refrigerant-22. The general features of the graphs 
are similar and indicate the fact that the critical velocities of 
the fluids of the process occur, as predicted, when the enthalpy 
and entropy are at their maximum. It has been shown (Shercliff 
1958) that for Rayleigh processes involving the perfect 
gas, the critical velocities of the fluids are associated with the 
points of maximum temperature and entropy. However, with 
flow occurring in a homogeneous two-phase fluid, where 
pressure and temperature are uniquely related properties, the 
isothermal speed of sound is always zero, since 

Here, the point of maximum enthalpy occurs when the fluid 
velocity is equal to the speed 

a .  = \ ~ p A  

This is the speed at which infinitesimally small pressure 
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disturbances would travel if the state changes within the 
disturbances occurred at constant enthalpy. Because of this, ah 
has been termed the isenthalpic speed of sound. On account 
of the analogy with 

(Op~ 1/2 

which is widely called the Newtonian speed of sound, it is 
reasonable to refer to ah as the third speed of sound, thus 
implying that Newton's aT is the second speed of sound. It is 
interesting to note that if the two-phase fluid is simplified to a 
single-phase gas, then the isenthalpic sound speed reduces to 
the Newtonian sound speed. Figure 7 shows that for a Rayleigb 
process, heat transfer in a subsonic accelerating flow leads to 
a decrease in temperature, which is the opposite effect to that 
for a gaseous flow accelerating below the Newtonian Mach 
number Mr. This is because the heat transfer is being used to 
increase the kinetic energy and to increase the vapor portion 
of the fluid stream. Figure 8 shows that the dryness fraction of 
the fluid increases as the pressure decreases in a subsonic 
accelerating flow. The differences apparent at high pressures 
are thought to be due to the indeterminacy of the dryness 
fraction at the thermodynamic critical point. 

Figures 9, 10, and 11 show the behavior of the Fanno process 
in a two-phase flow. The process, as plotted in the (H, S) plane 
(Figure 9), is similar to that in the (0, S) plane for a single-phase 
gaseous flow. The change of enthalpy in the subsonic branch 
of the flow is considered to be small, and it would be reasonable 
to assume that enthalpy remains essentially constant in many 
practical cases, such as flow in the expansion tube of a 
refrigeration system. However, temperature and pressure 
changes are significant in the subsonic branch of the process, 
as shown in Figure 10. The calculated results shown in Figure 
11 indicate that the change in the dryness fraction in the 
subsonic branch of the process is quite small. The redistribution 
of energy required for the change of phase of the fluid from the 
liquid to the vapor state is the result of a friction-generated, 
combined temperature reduction and drying process. The 
change of the dryness fraction predicted by the model fluid is 
not particularly accurate at high pressures because of 
limitations imposed by the indeterminacy of the dryness fraction 
at the thermodynamic critical point already mentioned. 

C o n c l u s i o n s  

The parameters selected to present the results correlate the data 
for the three fluids quite well. The exceptions are the cases 
involving the dryness fraction in the vicinity of the 
thermodynamic critical point. 

The model fluid represents the trends quite well in most cases. 
The exceptions are those involving the dryness fraction in the 
vicinity of the thermodynamic critical point. There is also a 

slight deviation near the sonic point for Rayleigh and Fanno 
flows. 

The results of the thermodynamic analyses have shown that 
the general behavior of the Rayleigh and Fanno processes, 
whatever the fluid, is qualitatively similar to that involving the 
perfect gas only, as demonstrated by Shercliff (1958). For  
flows involving saturated two-phase fluid only, the character- 
istics of the flows are governed by the pressure/temperature 
dependence, so in the case of an accelerating flow with pressure 
reducing, the temperature has to reduce but enthalpy and 
internal energy may increase or decrease. The latent heat of 
vaporization, needed to increase the dryness fraction of the 
fluid for an accelerating flow, is derived from the heat transfer 
to the fluid in the case of the Rayleigh process, and is generated 
as a result of frictional dissipation in the case of the Fanno 
process. 

The significance of adiabatic and Newtonian sound speeds 
in single-phase gaseous flows have been demonstrated by 
Shercliff ( 1958 ). 

In Rayleigh flows in two-phase fluids, a point of maximum 
enthalpy occurs where the flow velocity reaches the isenthalpic 
"speed of sound." This has become the significant parameter 
for two-phase fluids. For the perfect gas flow, the isenthalpic 
sound speed degenerates to that of the isothermal sound speed, 
i.e., Newtonian sound speed. Hence the isenthalpic speed of 
sound could be considered to be more general than the 
Newtonian speed of sound. 

A simple model of a homogeneous two-phase fluid has been 
presented. It has been shown to be capable of predicting 
satisfactorily the general features of the Rayleigh and Fanno 
flows in a two-phase fluid environment. 
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